Binding of Fyn to MAP-2c through an SH3 binding domain. Regulation of the interaction by ERK2.

نویسندگان

  • S P Zamora-Leon
  • G Lee
  • P Davies
  • B Shafit-Zagardo
چکیده

Microtubule-associated protein 2 (MAP-2) isoforms are developmentally expressed in the nervous system and contain a number of functional domains. Adjacent to the first repeat of the microtubule-binding domain is an RTPPKSP motif for binding SH3 domains. To identify SH3-containing proteins that interact with MAP-2, transfections, filter overlay assays, glutathione S-transferase (GST)-mediated binding assays, co-immunoprecipitations and enzyme-linked immunosorbent assays were performed. Transfections of MAP-2a, MAP-2b, and MAP-2c constructs into COS7 cells, followed by incubation of the cell lysates with SH3-GST fusion proteins, determined that the strongest interaction was between MAP-2c and the non-receptor tyrosine kinase Fyn; however, MAP-2b and MAP-2c also bound to Grb2. Co-immunoprecipitation of Fyn and MAP-2c from human fetal homogenates confirmed the interaction in vivo. MAP-2 synthetic peptides spanning the RTPPKSP motif bound to Fyn, and the interaction was regulated by phosphorylation. Co-transfections with MAP-2c and the extracellular signal-regulated kinase 2 (ERK2) demonstrated that MAP-2c is threonine/serine-phosphorylated on its RTPPKSP motif and that threonine phosphorylation abolished the MAP-2c/Fyn binding. Kinase assays and co-transfection of MAP-2c and Fyn confirmed that Fyn tyrosine kinase phosphorylates MAP-2c. Thus, the activation of signaling pathways may regulate cytoskeletal dynamics by altering the state of phosphorylation of MAP-2 by both ERK2 and Fyn kinase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disruption of Fyn SH3 Domain Interaction with a Proline-Rich Motif in Liver Kinase B1 Results in Activation of AMP-Activated Protein Kinase

Fyn-deficient mice display increased AMP-activated Protein Kinase (AMPK) activity as a result of Fyn-dependent regulation of Liver Kinase B1 (LKB1) in skeletal muscle. Mutation of Fyn-specific tyrosine sites in LKB1 results in LKB1 export into the cytoplasm and increased AMPK activation site phosphorylation. This study characterizes the structural elements responsible for the physical interacti...

متن کامل

Identification of Src, Fyn, and Lyn SH3-binding proteins: implications for a function of SH3 domains.

Src homology 3 (SH3) domains mediate protein-protein interactions necessary for the coupling of cellular proteins involved in intracellular signal transduction. We previously established solution-binding conditions that allow affinity isolation of Src SH3-binding proteins from cellular extracts (Z. Weng, J. A. Taylor, C. E. Turner, J. S. Brugge, and C. Seidel-Dugan, J. Biol. Chem. 268:14956-149...

متن کامل

Binding, domain orientation, and dynamics of the Lck SH3-SH2 domain pair and comparison with other Src-family kinases.

The catalytic activity of Src-family kinases is regulated by association with its SH3 and SH2 domains. Activation requires displacement of intermolecular contacts by SH3/SH2 binding ligands resulting in dissociation of the SH3 and SH2 domains from the kinase domain. To understand the contribution of the SH3-SH2 domain pair to this regulatory process, the binding of peptides derived from physiol...

متن کامل

Sites and molecular mechanisms of modulation of Na(v)1.2 channels by Fyn tyrosine kinase.

Voltage-gated sodium channels are important targets for modulation of electrical excitability by neurotransmitters and neurotrophins acting through protein phosphorylation. Fast inactivation of Na(V)1.2 channels is regulated via tyrosine phosphorylation by Fyn kinase and dephosphorylation by receptor phosphoprotein tyrosine phosphatase-beta, which are associated in a signaling complex. Here we ...

متن کامل

Phage display selection of ligand residues important for Src homology 3 domain binding specificity.

The Src homology 3 (SH3) domain is a 50-aa modular unit present in many cellular proteins involved in intracellular signal transduction. It functions to direct protein-protein interactions through the recognition of proline-rich motifs on associated proteins. SH3 domains are important regulatory elements that have been demonstrated to specify distinct regulatory pathways important for cell grow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 43  شماره 

صفحات  -

تاریخ انتشار 2001